
JOURNAL OF COMFVTATIONAL PHYSICS 12, 534-552 (1973)

A Parallel Algorithm for High Subsonic Compressible
Flow over a Circular Cylinder

S. RAJAN

Center for Advanced Computation, University of Illinois, Urbana, Illinois 61801

Received October 18, 1972

The development of superfast computers, which operate on data other than on the
purely sequential principle, calls for new computational algorithms which make full use
of the machine capabilities. Using the inviscid compressible supercritical flow over a
circular cylinder as an example, a computational algorithm is developed for a parallel
processing computer. All boundary conditions are satisfied explicitly and boundary
points are computed in parallel with interior points, thereby greatly increasing the
“machine utilization.” Treatment of mesh size changes with the parallel algorithm has
been accomplished in a novel way. The influence of various finite difference formulations
of the wall boundary condition on the computed results is studied and the results are
compared with those obtained by other authors. The importance of correlating the
formulation of the physical problem with the numerical technique and the computational
procedure to secure a high machine utilization in parallel computation is demonstrated.

1. INTR~OUCTI~N

Various numerical techniques have been employed to compute the inviscid
transonic flow over airfoil sections [l-4] and cylindrical bodies [5-71. Problems of
this category are numerically complex and computationally time consuming [l].
The finite difference calculations have thus far all been performed on computers
operating on the sequential principle and extensions of the problems have been
severely limited by the computing capacities of available machines. The parallel
computer concept offers distinct advantages in terms of speed, computing capacity
and storage for finite difference computations. With a larger class of problems in
mind, of which the transonic airfoil problem is one example, a computational
technique for a parallel machine is developed and illustrated in the calculation of
the inviscid supercritical flow over a circular cylinder. The technique as such is
adaptable to more complicated geometries with additional physical features.

In the numerical solution of a given problem three aspects are to be considered.

1. The formulation of the physical problem with the appropriate governing
equations, and the relevant initial and boundary conditions.

534
Copyright 0 1973 by Academic Press, Inc.
All rights of reproduction in my form reserved.

PARALLEL ALGORITHM FOR CYLINDER FLOW 535

2. The selection of an adequate numerical technique to ensure a consistent
computational procedure. Considerations of stability and accuracy enter the picture
here.

3. The actual implementation of the computational procedure on the
machine.

With new machines like the Illiac IV which operates on the parallel processor
concept, this last consideration takes on added significance. A problem governed
by a set of partial differential equations and solved on a parallel machine must
take notice of the way a parallel machine computes. The parallel computational
algorithm is different from that of the serial machine, and the special features of
the machine must be correlated with the formulation and programming of the
physical problem, from the very outset of the computation. Otherwise many of
the advantages offered by the new computers, such as increased computing capacity,
increased storage and speed of computation are lost, by computing the problem
in the same manner as with a serial machine. This is a crucial point if the parallel
machine is to be used efficiently. It now becomes essential to correlate the above
three criteria at every stage of the computation and give each its proper weightage,
to ensure the maximum possible machine utilization. This in turn paves the way
towards solution of more complex problems which the new generation of
computers promises.

The manner in which this is done for the case of the inviscid, compressible,
supercritical flow around a circular cylinder, is developed in this paper.

2. GOVERNING EQUATIONS

In computing the inviscid, compressible steady state flow around a circular
cylinder, it is convenient to formulate the problem in polar coordinates. The
conservation laws governing the flow are the following:

continuity:

momentum:
r direction

0 direction

(1)

(2)

(3)

536 RAJAN

energy:

state:
p = pRT. (5)

After some manipulation these equations can be written in vector form as a single
equation of the form

Ft+AFr+BFo+C=O (6)
where,

P

F= ; ,A= i-1 s

Here P = ln(p/pm). Subscripts denote differentiation with respect to the sub-
scripted variable.

In the actual computations, Eqs. (l)-(5) are solved in nondimensional form
using

(PallPaY ~0/(P*/Pco>““, and (Pm/Pm)

as reference values for velocity, time and temperature, respectively. Also the
normalized entropy is given by

S = W-h> - Y WlpJ. (7)

FIG. 1. Computational Mesh system.

PARALLEL ALGORITHM FOR CYLINDER FLOW 531

L. BOUNDARY R. BOUNDARY

l?E. NO. 9.
4
3
2

Ill- 1

FOR ROWS 1 AND 3 FOR l?E. 1,3 AND l?E. 62,64

p(l,ml=p(3,m) p(I,l)=P(P,3)

u(l,m) = -u(3,m) u(%l)=uU,3)

v(l,m)=v(3,m) vwL,l)=-v&3)
s U,m) = s (3, m) So,1)=so,3)
p(l,m)=p(3,m) ,9(51)=~0,3) ETC.

FIG. 2. Computational arrangement of mesh points.

The conservation equations are quasilinear with respect to F and hyperbolic
with respect to t, and are the Euler equations in polar coordinates. The solution
of these equations for a given free stream Mach number and specified body
geometry, involves the determination of the dependent variables P, U, t), and p
at each point in the computational space. The steady state solution of the com-
pressible flow field is obtained as the long time limit of the temporal formulation.

3. THE FINITE DIFFERENCE FORMULATION

In the computational space, the above governing differential equations are
replaced by equivalent finite difference equations. Discretized values of the
variables at individual mesh points are used to formulate the finite differences.
A variation of the explicit two-step Lax-Wendroff scheme is employed in this
investigation to illustrate the parallel algorithm. A linear stability analysis of the
scheme shows that it is stable if the Courant-Friedrichs-Lewy criterion is satisfied.
A value of the time step dt given by

At = dr/lS(l u I + a) (8)

is used, where the factor 1.5 is introduced to be on the safe side.
Intermediate values for the variables P, U, u, and p are first calculated at time

level (n + l/2) dt from known values at time level n d t. For the differential
equation

F,+AF~-l-BF,+-C=O (6)

538 RAJAN

the intermediate values are given by the equation

- (AtPAr) 4’,mE-l~2,m - %I~.~I

where F$,, is the value of F at the point (I Ar, m Al?) and time n At. Final values
of F at time level (n + 1) At at the same point are computed from the intermediate
values*from the equation

F n-,-t = (1 - 4) F&z + (5V4~[FzYm+, + &‘&-I + &‘-L,m + &‘Lml 1.m

This formulation involves a nine-point grid. Here C#J is a numerical viscosity para-
meter which provides additional stability other than that inherent in the truncation
viscosity of the finite difference scheme [9].

In this formulation of the finite difference equations, no attempt was made to
cast the governing equations into conservation form, as the method illustrated
herein for a parallel machine is not affected by the form of the equations. Further-
more, in certain types of applications the final steady state result does not appear
to be dependent on the form of the governing equations as demonstrated by
Moretti [lo]. In addition, the shock strengths in the range of supercritical Mach
numbers considered here are such that any inaccuracies introduced by the non-
divergence form of the equations are not expected to be greater than the error
introduced by the finite difference scheme itself.

4. PARALLEL COMPUTER CHARACTERISTICS

We will now describe the essential features of the parallel computer insofar as
it helps us to understand the computational algorithm for a parallel machine.

Most computers in use today are sequential machines in which different blocks
of data are operated upon one after another, by an identical program. Each
operation on a data block corresponds to one iteration in a loop. The mode of

L: 1
1'1.N (01

FIG. 3(a). Serial computer concept.

FIG. 3(b). Parallel computer concept.

. . .

. . .

FIG. 3(c). Illiac IV parallel machine

540 RAJAN

operation is illustrated schematically in Fig. 3(a). There is only one processing
unit (PU) performing arithmetic operations, and hence the rate of data throughput
in the sequential machine is limited. The parallel concept differs from this in that
a number of arithmetic units operate simultaneously on different data blocks,
under the direction of a control unit (Fig. 3(b)). For example, in the Illiac IV
parallel computer (Fig. 3(c)), there are 64 processing units under the direction of
each control unit. Each processing unit contains the relevant hardware for
performing the usual arithmetic operations in addition to an associative memory
unit capable of storing 2048 sixty-four bit words. The program may be stored in
the main disc memory and then transferred in blocks to the array memory.

The arithmetic units are connected in such a way that direct, parallel word
transfer paths exist between each processing unit and others having assigned labels
differing by plus and minus eight and plus and minus one. For example PU 11
can transfer words directly to PU’s 19 and 3 and PU’s 12 and 10. In finite difference
calculations this feature is very useful. Thus in taking either a forward or a
backward difference we can proceed as follows:

forward difference:
Transfer Vi in PU no. i to memory of PU no. i + 1
Subtract. (U,+r - UJ is in PU no. i + 1.

backward difference:
Transfer Uj from PU no. i to memory of PU no. i - 1.
Subtract. (Vi - U,J is in PU no. i - 1.

Since all the PUS are performing the same transferring (or shifting) operations
simultaneously, the appropriate differences at each mesh point reside in the required
processing element (PE) memory. This can be ensured by storing the quantities Vi
in the appropriate PE memory in the beginning before executing the arithmetic
operations.

Central differences may also be readily obtained as the differences of forward
and backward differences. Since these differences can be obtained simultaneously
in parallel instead of sequentially, the parallel algorithm greatly increases the
computing capacity in proportion to the number of arithmetic units operating in
parallel. Therefore in finite difference mesh point calculations, the dependent
variables at a number of mesh points can be calculated simultaneously, up to a
maximum of 64 points.

The arithmetic unit or processing element (PE) is driven by the control unit (CU)
to execute the instruction string contained in the CU. Each control unit commands
a set of 64 processing units (PUS). It is responsible for the initial processing of
instructions, up to and including the generation of instruction microsequences for
a step by step control of the processing elements. This control unit manipulates

PARALLEL ALGORITHM FOR CYLINDER FLOW 541

two types of instruction streams: those which it decodes for specifying commands
to the PE’s and those which command the common registers.

Thus all the processing elements execute the same instruction stream. Since each
PE calculates the dependent variables at a given mesh point, the instruction stream
for calculating the dependent variables at all the 64 mesh points must be the same.
This criterion is especially hard to satisfy at a boundary point in the calculation
since in most cases the instruction stream for the boundary point differs from the
instruction stream for the interior point. The way in which this difficulty has been
overcome in this work, will be described later on.

Other essential features of the Illiac IV parallel computer are the input-output
subsystem, the disc file memory and the control computer. These elements are
shown schematically in Fig. 3(c).

To fully utilize the parallel concept the maximum possible number of arithmetic
units should be kept busy during the calculation. This requires a proper compu-
tational mesh layout and problem formulation. In most cases, it is the boundary
points that offer the maximum difficulty in parallel computation, and the
formulation of the boundary conditions require the greatest attention.

5. THE BOUNDARY CONDITIONS

We now examine the specification of appropriate boundary conditions to satisfy
the following criteria:

(a) The boundary conditions must be physically realistic so as to provide
the correct solution to the initial-boundary value problem.

(b) The computation of mesh points on the boundary surface must be
accomplished in such a way as not to reduce the machine utilization.

In this paper the term machine utilization as applied to a parallel processing
machine is defined thus:

Machine Utilization =
Actual number of PE’s performing useful calculations

Total number of PE’s capable of useful calculation ’

Since in a serial machine the arithmetic statements are processed one after the
other, there is no loss of computing capability when boundary points are calculated
from a separate finite difference formulation than that used at interior points.
The same strategy applied to a parallel machine results in a serious loss in machine
utilization. Let

N1 = number of boundary points encountered in a row of mesh points.
N, = total number of processing units of a parallel machine.

542 RAJAN

During boundary point calculations (Nz - NJ of the arithmetic units would be
shut off, since these points require a different set of instructions than those used
at interior points. Thus machine utilization during boundary point calculations
would be

For a two point boundary calculation on a machine like the llliac IV which has 64
arithmetic units, the machine utilization is only about 4 %. This is very poor usage
of the machine, considering that this loss of computing capacity is suffered at each
time step iteration in the calculation. On the other hand if boundary points can
be computed with the same instruction stream as interior points, while still satis-
fying conditions (a) and (b) above, almost all of the iV, processing units can be
simultaneously employed, with consequent increase in machine utilization. We
now examine each of the boundary conditions to see how this is done.

A. 0 = 0 and 0 = 7~ Boundaries

A study of the finite difference representation of the governing equations obtained
with the Richtmyer two-step scheme shows that the boundary points on the 0 =0
and 8 = rr lines may be computed with the same instruction stream as other
interior points, if reflection conditions are specified at these boundaries. This
criterion is also physically realistic. The corresponding mesh arrangement is shown
in Fig, 1 and 2. The dependent variables at the 6’ = 0 and 8 = rr lines on any
circumferential row of points are calculated in PE 2 and PE 63, respectively. They
are labeled as m = 2 and m = 63 in the above mentioned figures. The PE’s 1
and 64 contain the reflected values of the dependent variables in PE 3 and PE 62,
respectively, and do not perform useful mesh point calculations. As a result there
is a loss of 2/64 or roughly 4 % of computing capacity. However, as boundary
points on the 0 = 0 and 0 = n lines are now computed simultaneously in parallel
with exactly the same instruction stream as interior mesh points 3 to 62, the machine
utilization has been brought close to 100 per cent.

B. Boundary Condition on the Cylinder Surface

On the cylinder body surface, the radial component of the velocity is zero and
is so maintained for all time. At the body surface reflection conditions are again
specified. This requires the storing of the dependent variables on a fictitious row
of points as illustrated in Fig. 1, and is an increased demand for storage in each
PE memory. If a one-sided difference scheme is employed at the body surface,
this fictitious row of points is not required. However, calculations show that
reflection conditions at the body surface provide smoother results and faster
approach to the steady state solution. In this case although there is a change in

PARALLEL ALGORITHM FOR CYLINDER FLOW 543

the instruction stream with the one-sided scheme at the cylinder body surface,
this is not crucial because the changed instruction set is fed to all the 64 processing
units.

C. Far Field Boundary Condition

To carry the computation far afield into the free stream would require a great
many grid points. Instead an inverse transformation is used which maps the region
external to a given radius in the physical space into another circular space such
that infinity in the physical space now transforms to the origin in the new trans-
formed space. The conditions at infinity, namely P = P, , u = u, , D = U, and
p = pm are applied on a circle of small radius in the transformed space. The trans-
formed governing equations are now applied in finite difference from in the trans-
formed space. Sufficient overlap is maintained between computations in the physical
and transformed spaces. The parallel computational algorithm in the transformed
space is identical to that in the physical space.

Truncation errors in the far field will be larger than in the near field. However,
due to the small variation of the physical variables from the free stream values,
this effect is not considered important. Further details may be found in Ref. [7].

6. COMPUTATION ON A PARALLEL MACHINE

The method of solution is to superpose on the computational space a finite
difference grid system, as shown in Fig. 1. Initial values of P, U, u, and p, equal to
the free stream values at infinity, are assigned to each grid point. Values at boundary
points are specified to comply with the boundary conditions discussed in the section
on boundary conditions.

To compute in parallel on a machine like the Illiac IV, the circumferential row
of mesh points at any radius r (Fig. 1) are allotted to a row of 64 processing units,
one mesh point per processing unit (Fig. 2). These are labeled from m = 1 to
m = 64 in Figs. 1 and 2. The mesh points are arranged such that at the 19 = 0 and
6’ = rr boundaries, the values of m are 2 and 63, respectively. Each circumferential
row of mesh points lies at a particular radius r, and is labeled with the letter 1.
The row of points 1 = 1 lies below the body surface and is required to satisfy the
specified reflection boundary conditions. Each processing unit m is engaged in
the operations of computing the value of the variables P, U, ZJ, and p at the point
m A0 on the circumference. Since we have a row of processing units, a circum-
ferential row of mesh points are computed simultaneously in parallel.

The computational space is traversed from the cylinder body surface to the far
field via the transformed space in the far field. Beginning at the body surface,
the two-step Lax-Wendroff analog of the conservation equations is employed

544 RAJAN

to compute (n + 1) At values from known n dt values. In this process two sets of
intermediate (n + l/2) dt values of P, u, u, and p centered at (m + l/2) LIO and
(m - l/2) At9 and at (, + l/2) dr and (I - l/2) dr are obtained. The derivatives
ap/a9, au/a@, au/a0 are obtained by simultaneous transfers across the PE’s in the
proper directions, while the r derivatives are computed individually in parallel in
each processing element. With these known (n + l/2) dt values, all 64 processing
elements now calculate (n + 1) At values. However, according to the computational
mesh arrangement (Fig. l), only PE’s 2 to 63 contain correct computed values at
time (n + 1) At. It is therefore necessary to transfer (H + 1) At values from PE 3
to PE 1 and from PE 62 to PE 64 to comply with the reflection boundary conditions
at these points. These housekeeping operations, however, occupy only a small
percentage of time in one cycle of computing 64 mesh points.

The radius r is now increased by Ar and the procedure repeated for the new
row of circumferential mesh points. The computational field is thus traversed
from the body surface to the outer edge of the far field for this value of time equal
to (n + 1) At. Using these values of P, u, v, and p, the computational field is next
traversed from the body surface to the far field to obtain dependent variables at
the mesh points at time (n + 2) At. The steady state criterion used to stop the time
step iteration is that the dependent variables on the body surface should not change
by more than one per cent for ten successive iterations.

Should it be necessary to compute 128 mesh points instead of 64, the procedure
would essentially remain the same. In this case mesh points 2 and 127 would be

ASSIGN INITIAL
VALUES AT GRID
POINTS. ASSIGN
i?E. CONSTANTS

1 -AVERAGES

-EQUATION CONSTANTS

- 0 DERIVATIVES

-r DERIVATIVES

n+K? CALCULATE F, ,m

ATs+$@ AND+
STORE

PROCEED TO NEXT ACROSS PE.‘s TO

FIG. 4. Schematic computational block diagram.

PARALLEL ALGORITHM FOR CYLINDER FLOW 545

the boundary points on the 0 = 0 and tJ = 7~ lines, respectively. The calculation
would be performed in two blocks of 64 mesh points each. Mesh points numbered
64 and 65 would refer to the same point in the physical space, but would be
necessary to obtain the correct forward and backward differences as the values are
transferred across the PE’s. Thus if we have only 64 processing elements, but we
wish to compute 128 mesh points instead of 64, a total of 125 points can be accom-
modated in the physical space. It is also implied in the above description that old
values of P, u, u, and p are retained long enough in memory to enable new values
at a later time to be computed, in addition to being available to provide continuity
where there are overlapping mesh regions.

A schematic layout of the computational procedure is shown in Fig. 4.

7. TREATMENT OF MESH SIZE CHANGES

A. Mesh Size Change in the Tangential Direction

A location in the cylinder problem, where the rapid change of field variables
necessitates a change in the mesh size, is the region around the forward stagnation
point where the horizontal component of the velocity is brought to zero. In any
region where mesh size changes are accomplished on a parallel machine, it must
be done in such a way that the parallelism is not destroyed.

The procedure for changing the mesh size in the tangential direction is illustrated
in Figs. 5(a) and 5(b). Suppose that we need to change mesh sizes at point 14 on
a row of circumferential points, Fig. 5(a). The points are numbered such that
at the next point, point 15, the tangential increment would now be 240 instead
of de. Under the usual procedure, point 12 variables would be calculated in PE 12,
point 13 in PE 13, point 14 in PE 14 and point 15 in PE 15 and so on. Now while
using the Lax-Wendroff two step scheme to calculate the field variables at point 13
and time level (n + 1) L3t we need the field variables at points 12 and 14 at time
level n At. Therefore all sums, differences, derivatives, etc., that are needed for the
calculation of P, u, a, and p at (n + 1) At and at point 13, just before the mesh
size change, are available and can be calculated in parallel with the same instruction
stream as that supplied to, say, point 11.

However, when we feed the same instruction stream to point 14, where the mesh
size change begins, we run into trouble. For example the number of shifts performed
in obtaining forward and backward differences for the finite difference approxi-
mations to the derivatives will be different in the process of obtaining the (n + 1) d t
values of P, u, ZJ, and p from the known n d t values. The parallelism will therefore
be destroyed.

To maintain the parallelism while changing the mesh size in the tangential
direction, we allot the calculation of the dependent variables P, u, V, p at points 1

581/12/4-8

m:2 m=64

AB A8 A8 A0 2AQ 2A8 2A82A8 2A8 2AR A@ A0 A@
m- Ill IL?\ 131 141 161 161 171 161 _ 331 ‘1 3¶1 361 371 361 361 1;;

f? E. NUMBER 4

FIG. 5(a). Mesh size change in tangential direction. No overlapping points.

A9 A8 A8 A8 A9 2A8 2 AB 2A8 2A8 2A.82A8 2A8 A0 A8 A0

RE. NUMBER __*

FIG. 5(b). Points superposed to change mesh size in tangential direction.

PARALLEL ALGORITHM FOR CYLINDER FLOW 547

through 13 to PE numbers 1 through 13 as before. But now the variables at point 12
in the physical space, Figs. S(a) and 5(b) are stored in PE number 12 and also
in PE number 15, Fig. 5(b). So also the variables at point 14 are stored both in PE
number 14 and PE number 16. Point 15 in Fig. 5(a) now becomes point 17. Two
extra PE’s, namely 15 and 16, are used to store and calculate the variables P, u, v,
and p corresponding to points 12 and 14 in the physical space (Fig. 5(a)). Even
under the new reordering of points the variables at mesh point 13 in the physical
space can still be computed in the usual manner. This is possible because with
the Lax-Wendroff scheme we need the values of P, U, v, and p at points 12 and 14,
distant ---de and +dB, respectively, from point 13, to compute (n + 1) dt values
at point 13.

Remembering that we are computing in parallel, PE number 14 will attempt to
calculate the (n + 1) At values at point 14. In computing the finite differences
representing aP/M, &@I, and au/a8 during the process of transferring values
across PE’s by shifts of the same amount as any other PE, PE number 14 will use
the physical variables stored in PE 13 and PE 15, distant ----de and -240, respec-
tively, from PE 14 under the arrangement Fig. 5(b). The same instruction stream
supplied to PE 14 as to PE 13 will compute erroneous values of P, U, v, and p in
PE 14 for point 14. Similarly it can be shown that (n + 1) dt values computed by
PE 15 are also wrong.

Coming now to PE 16 which actually contains the physical variables of point 14
in Fig. 5(b), we need the values of P, u, v, and p at n dt from PE 15 and PE 17 to
find the values of (n + 1) At at point 16. Since both PE 15 and PE 17 store variables
which are -248 and $240, respectively, from PE 16, we are assured of obtaining
the correct values for the finite difference approximations to the partial derivatives
aP/aB, au/aO, av/aO, etc. Therefore PE 16 computes the correct values for P, U, V, and
p at (n + 1) At at physical point 16 under the new arrangement of points. Thus all
the PE’s up to PE 13 compute correct values of the physical variables at (n + 1) d t,
while PE 16 calculates the correct values for point 16. PE’s 14 and 15 are needed
for computing (n + 1) At values at 13 and 16, respectively, but themselves do not
compute correct (n + 1) dt values at points 16 and 12 which they represent. To
ensure that PE’s 15 and 14 contain correct (n + 1) At values for later computation
of (n + 2) dt values, we need to update the values of the physical variables in
PE’s 15 and 14 from correct (n + 1) dt values computed by PE’s 12 and 16,
respectively. This is done by shifts of the specified amounts across the PE’s after
calculating all the (n + 1) At values at all the mesh points, since at this time there
are other reassignments to be made, and a number of these may be done
simultaneously.

To reduce the tangential mesh dimension we again overlap two points in the
physical space by points 35, 37 and 36, 39, The correct values at (n + 1) At are
computed in PE 35 and PE 39. In order to have the correct values at (n + 1) dt

548 RAJAN

L 1 I I I V/wz/~ I I I 1]
9 0 7 ;3;1 r~= 1234 5 6 7

(a)
FIG. 6(a). Physical mesh layout.

T T II II

7 7

46 46

3 3

2 2

1 1

m------* m------*
(b) (b)

FIG. 6(b). FIG. 6(b). P. E. Memory storage for mesh size change in radial direction. P. E. Memory storage for mesh size change in radial direction.

in PE’s 36 and 37 for computing (n + 2) At values, the physical variables in PE’s 36,
and 37 must again be updated at the appropriate time before the commencement
of the (n + 2) At computation.

B. Mesh Size Change in the Radial Direction

While two extra PE’s are involved for each mesh size change in the tangential
direction, the mesh size change in the radial direction involves extra computer

PARALLEL ALGORITHM FOR CYLINDER PLOW 549

memory. The method of changing the mesh dimension from dr to 2dr in the radial
direction is illustrated in Figs. 6(a) and 6(b). As the radius increases, the derivatives
apI&, au/ar, and av/ar, decrease and it becomes possible to increase the mesh size
in the radial direction without sacrificing accuracy. Each circumferential row of
points is designated by the value of the index 1. For the sake of illustration let it
be required to change mesh sizes in the radial direction at the row corresponding
to I = 4. To compute (n + 1) dt values for points on row 3 we need n dt values
on row 2 and row 4 and these are readily available. To compute (n + 1) dt values
on row 4 we need points on row 7 and row 2 at time IZ d t, and also a change in
the instruction stream to the PE’s at this point in the computation. Instead of
changing the instruction stream, we choose to label points on row 4 as also being
the points on row 6 and we label the points on row 2 as also being the points on
row 5. After calculating points on row 3 in the usual manner, we now increase
the row index 1 in the calculation to 6 and compute points on row 6. Calculation
of points on row 6 at (n + 1) At requires points on row 5 and row 7. These latter
rows being spaced at -2dr and +2dr from row 6 involve a change in the instruc-
tion stream to all the PE’s which is accomplished simultaneously. Thus changing
the mesh size in the radial direction involves storing the requisite information for
two rows of points twice, suitably labeled so as to be available at the right location.
Any number of changes in mesh size in the radial direction may be made as dictated
by the physical problem.

8. RESULTS AND DISCIJSSION

Figure 7 shows the surface tangential velocity obtained from a simulated
computation for a Mach number of 0.05. Since the flow can be considered
essentially incompressible at this low Mach number, the result can be compared

3
- INCOMPRESSIBLE

i

POTENTIAL FLOW
0 PRESENT CALCULATION

>

0 n/g 37v4
6 COC%NATE

n

FIG. 7. Comparison of cylinder surface velocity with potential theory results.

550 RAJAN

Mm’0.41

,=0.05

1.2..

0.8~-

0.6.-

0.4.-

IL------
0 20 40 60 80 100 120 140 164 lB0

8 COORDINATE

FIG. 8. Normalized pressure and density at cylinder wall for a free stream Mach number
of 0.41.

B COORDINATE

FIG. 9. Comparison of results for different formulations of wall boundary condition.

PARALLEL ALGORITHM FOR CYLINDER FLOW 551

8 COORDINATE

FIG. 10. Comparison of present results with those obtained by Holt and Masson by the
method of integral relations.

with that obtained from incompressible potential flow theory. The curves show that
the cylinder surface velocity from the present method shows excellent agreement
with that obtained from potential flow theory. At this low Mach number, the value
of the artificial viscosity parameter + is small and its influence on the incompressible
flow computation is negligible.

Values of p/p, and p/p, for a free stream Mach number of 0.41 are shown in
Fig. 8. The value of C$ for this computation is 0.05. From the curves we can clearly
discover the recompression shock located at 0 = 110 degrees on the cylinder
arc.

Figure 9 shows the effect of different finite difference formulations of the cylinder
wall boundary condition. The radiaI velocity at the wall is forced to zero in both
cases. For a free stream Mach number of 0.45 and a value of + = 0.1, a one-sided
scheme and a centered scheme are used at the wall. For the one-sided scheme the
additional row of points shown in Fig. 1 (at I = 1) is no longer required. The curves
in Fig. 9 show that the shock location is not appreciably affected by the type of
scheme at the wall. However the strength of the shock is changed, with the centered
scheme yielding a stronger shock. Since the centered scheme is spatially more
accurate than the one sided scheme, it would be reasonable to assume that the
solution obtained with it would come closer to the true solution. Figure 10
compares the nondimensional surface velocity computed by the present method
with the result obtained by Holt and Masson [8] by the method of integral relations.
The velocity curve from the present calculation is smooth although there is some

552 RAJAN

difference in the shock strength obtained by the two methods. The shock location
is in good agreement, while the velocity profiles agree better on the forward side
of the cylinder than on the rearward side.

9. CONCLUSIONS

For the new generation of computing machines, the importance of correlating
the formulation of the physical initial-boundary value problem with the actual
computational algorithm to obtain a high degree of machine utilization is
demonstrated. Unless this is done at every stage of the computation, much of
the advantage offered by the new machines, like the parallel processing Illiac IV,
is lost. The time dependent method of realizing the steady state solution used in
this work is shown to be eminently suited for parallel computation, and is easily
modified to include more complex problems. Sample results presented are in good
agreement with results obtained from potential theory and from other investigators.
Other results will be presented elsewhere [9].

REFERENCES

1. R. MAGNUS AND H. YOSHMARA, AZAA J. 8 (1970), 2157-2162.
2. E. M. MLJRMAN AND J. D. COLE, AZAA J. 9 (1971), 114-121.
3. T. C. TAI, Applications of the method of integral relations to transonic airfoil problems,

AZAA Paper No. 71-98, Jan. 1971.
4. J. L. STEGER AND H. LOMAX, AZAA J. 10 (1972), 49-54.
5. C. P. KENTZER, Computations of time dependent flows on an infinite domain, AIAA Paper

No. 70-45, Jan. 1970.
6. G. MORETTI, “Transient and Asymptotically Steady Flow of an Inviscid Compressible Gas

Past a Circular Cylinder,” Polytechnic Institute of Brooklyn, Report No. 70-20, 1970.
7. S. RAJAN, A Computational Technique for High Subsonic Compressible Flow past a circular

cylinder on a Parallel Computer, Center for Advanced Computation Report, University
of Illinois, Urbana, No. 50, 1972.

8. H. HOLT AND B. S. MA~XJN, The Calculation of High Subsonic Flow past bodies by the
Method of Integral Relations, “Proc. of the Second International Conference on Numerical
Methods in Fluid Dynamics, Berkeley,” Springer-Verlag, N.Y., 1971.

9. S. RAJAN, Evaluation of Numerical Viscosity Effects in Transonic Flow Calculations, Paper
No. 73-131 presented at the AIAA 11th Aerospace Sciences Meeting, Jan. 10-12, 1973,
at Washington D.C.

10. G. MORETT~, “The Choice of a Time-Dependent Technique in Gas Dynamics,” Polytechnic
Institute of Brooklyn, Report No. 69-26, 1969.

